
Opportunities for Analyzing Hardware
Specifications with NLP Techniques

Alejandro Rago∗†1, Claudia Marcos∗‡2, J. Andrés Diaz-Pace∗†3
∗Instituto Superior de Ingeniería de Software (ISISTAN-UNICEN)

Tandil, Buenos Aires, Argentina
†CONICET, Argentina

‡CIC, Buenos Aires, Argentina
1 2 3{arago,cmarcos,adiaz}@exa.unicen.edu.ar

Abstract—Hardware design is a mature discipline that heavily
relies on complex models to create the blueprints of a system
and special notations to describe the expected behavior of its
components. However, hardware engineers frequently have to
go through multiple specifications written in natural language
to identify components, constraints and assertions and translate
them to more formal expressions in order to enable automated
verifications and consistency checks. For this reason, computer-
assisted tools capable of processing and understanding hard-
ware documentation can be of great help to assist and guide
engineers in difficult and otherwise error-prone activities. In
previous works, we have explored several Natural Language
Processing (NLP) techniques for the analysis of requirements
and architecture specifications with promising results. In this
article, we report on some interesting applications we developed
for inspecting Software Engineering documentation and discuss
their potential applications to automated hardware design.

I. INTRODUCTION

In the last decade, there has been an increasing demand
of software systems encoded as hardware circuits. This kind
of development is commonly referred to as Systems-on-Chip
(SoC) or Application Specific Integrated Circuits (ASIC).
Since the production of SoC is often in the number of
thousands units, making mistakes in early engineering phases
can have negative consequences in the quality of the product.
For reducing bugs in the design and keep manufacturing costs
on level, engineers must verify the design models and test the
circuits before constructing a lithographic mask of the chip.
In fact, verification activities are said to take up to 60% of the
design cycle in a modern SoC [1]. However, most documen-
tation of SoCs specified at early stages is written in natural
language [2]. This brings some challenges for engineers, who
have to carefully read hardware specifications in order to build
“the right” design model (e.g., using VHDL or HDL, among
others) or to determine the “correct” assertions that need to
be verified (e.g., expressed in CTL or SystemVerilog).

It is this context that Natural Language Processing (NLP)
can play an interesting role in assisting engineering tasks and
streamlining design and verification activities. NLP techniques
have been recently adopted in many engineering activities for
analyzing textual documentation and reducing development
costs by improving the overall quality of end products. Exam-
ples of disciplines currently taking advantage of NLP are: soft-
ware development, medical advising, recommender systems,

psychological assessments, among others. We believe that the
hardware community can benefit from NLP techniques for
automating hardware design processes. Some researchers have
already explored these technologies by analyzing hardware
descriptions, specifications and comments for diverse tasks,
such as: transforming informal sentences into formal models
[3], generating VHDL snippets out of natural language [4],
deriving assertions from requirements [1], and generating ver-
ification properties expressed in formal languages [5], among
others. However, these works have only used a fraction of
technologies available today for understanding written text and
we think there are many opportunities left unexplored.

In this article, we report our experiences of applying NLP
techniques for understanding textual documentation produced
as a byproduct of a software development process. Our re-
search team has been working for the last five years trying to
find deficiencies in requirements specifications and software
architecture documents, tackling problems like uncovering
latent concerns in use case specifications [6], identifying
duplicate functionality in textual requirements [7], and recov-
ering traceability links between requirements and architecture
documentation [8]. Our position is that the tooling developed
to this end, such as the text processing infrastructure and the
information extraction mechanisms can be used either directly
or with some adaptations to analyze hardware specifications.

The rest of the paper is organized into 3 sections. Section II
introduces the text analyses infrastructure to deal with software
development problems, consisting of an NLP pipeline and two
querying languages. Section III presents three applications we
have successfully implemented on top of that infrastructure.
Section IV reviews existing work for automating hardware
design activities using NLP techniques. Finally, Section V
gives the conclusions and discusses some opportunities for
advancing the state-of-the-art in hardware automation.

II. REUSABLE ASSETS FOR ANALYZING TEXTUAL
SPECIFICATIONS

In the last years, our research group has explored the
application of modern NLP techniques to help software an-
alysts at early development stages. This endeavor led to the
instantiation of an scalable text processing architecture called
UIMA, integrating diverse NLP techniques for understanding

Figure 1. Schema of our NLP infrastructure

textual software artifacts. Furthermore, we successfully inte-
grated information extraction techniques for taking advantage
of the results of text processing modules, such as an SQL-
like and a rule-based scripting language called EMF Query2
and RUTA, respectively. Figure 1 sketches the components for
analyzing textual documents and developing automated tools.

A. Analyzing Text with the UIMA Pipeline

The first step we took towards the analyses of documents
produced in SE was defining an extensible but yet powerful
pipeline of text processing modules. To this end, we leveraged
the UIMA framework1 [6], [7]. UIMA is an extensible archi-
tecture for building analytic applications that process unstruc-
tured information to discover relevant knowledge. Among the
UIMA features that support semantic search, we can mention:
detection of the language of a specific document (e.g., English,
Spanish), language-dependent linguistic processing (e.g., tok-
enization, lemmatization, etc.), and the discovery of entities
and relations in the text. Still, UIMA does not provide a
text processing pipeline out-of-the-box. Instead, the framework
only defines the structure and communication protocols for
text analytic modules, leaving the implementation of individual
modules up to the developers. For an in-depth discussion of
UIMA, the reader is referred to [9].

Our instantiation of UIMA supports the linguistic analysis
of both textual use cases and architectural documentation.
Furthermore, we implemented a set of modules that make ex-
tensive use of the annotation mechanisms provided by UIMA.
An annotation identifies and labels (i.e., annotates) a specific

1http://uima.apache.org/

region of a text document. For instance, an annotation can
label a noun as “object” or a verb as an “action” in a sentence.
The building blocks of a UIMA application are the so-called
annotators. An annotator is a module that iterates over an
artifact (e.g., a textual document) in order to discover new
annotation types based on existing ones, and updates a shared
representation structure. Different arrangements of annotators
can be configured to produce an end-to-end analysis.

Figure 2 shows a linguistic analysis of one use case step
excerpted from a requirements specification. Each rectangle is
an annotation that points either to the base text or to other
annotations. The annotations of level 1 correspond to tokens.
For example, the rectangles labeled as “Token” identify each
word within the use case step, including information such as
if those words are verbs (“computes”) or nouns (“system” and
“report”), among other properties. The annotations of levels
2 and 3 provide richer information, such as the predicate
structure. In the figure, the rectangles labeled as “Predicates”
and “Argument” recognize the semantic role of a syntactical
structure, whereas the rectangles labeled as “DomainAction”
recall the intention of the action of the sentence.

The first part of the pipeline consists of standard NLP
annotators, namely: i) sentence splitting, for identifying sen-
tence boundaries; ii) token splitting, for extracting tokens from
sentences; iii) stopwords detection, for discarding irrelevant
tokens; and iv) stemming, for reducing each token to its
lexical root. In addition, Part-of-Speech (POS) tagging is
used for identifying the linguistic category of each token
(e.g., noun, verb, adjective, participle, pronoun, preposition,
etc.). Implementations of these five techniques are already

Figure 2. Linguistic Analyses made with the UIMA Framework

available. Well-known packages include: OpenNLP2, Stanford
CoreNLP3, and Mate-Tools4. For example, OpenNLP provides
algorithms for sentence splitting, token splitting and POS
tagging. Stanford CoreNLP provides similar algorithms but
also supports dependency parsing.

In the second part of the pipeline we included more ad-
vanced NLP tasks from the field of computational linguistics,
such as lemmatization, dependency parsing and semantic role
labeling (SRL) [10]. Lemmatization is a technique that helps
to identify the morphological root of a token (instead of trim-
ming words like in stemming). Dependency parsing, in turn,
focuses on the grammatical structure by identifying syntactic
relationships between words. For our purposes, lemmatization
and dependency parsing are prerequisites for applying SRL.
This last task is instrumental in our pipeline, because SRL
recognizes the semantic arguments associated with a predicate
(or verb) and classifies these arguments into specific roles
(e.g., the agent, the patient, the manner, the time, the location,
etc.). The predicate annotation in Figure 2 (level 2) is an
example of SRL (see Predicate P1). Typical NLP applications
using SRL include: question answering, machine translation,
or information extraction. Moreover, SRL allow us to derive
more complex abstractions, such as recurrent interactions in
use cases that we called “domain actions”. Existing packages,
such as Mate-Tools, provide algorithms for lemmatization,
dependency parsing, and SRL.

2http://opennlp.sourceforge.net/projects.html
3http://nlp.stanford.edu/software/corenlp.shtml
4http://code.google.com/p/mate-tools/

B. Extracting Information with EMF/Query2 and RUTA

After gathering diverse types of meta-information from
textual documents by using NLP techniques, we needed to
have some sort of mechanism to consume and filter the data in
order to simplify the analysis of information and tool develop-
ment. For this reason, we explored two alternatives. The first
idea was to complement the UIMA pipeline with searching
queries by using a special language to browse/navigate the
annotations. The second idea was to incorporate a rule-based
engine able to evaluate conditions in the annotation schema
and execute actions as a result (for example, creating new
annotations or modifying existing ones).

The search queries implemented in [6] are built on top
of the EMF Query25 project, which serves as an SQL-like
language for searching through EMF models. The query syntax
is simple to understand and powerful enough to express
complex recovery searches. A query is composed of three
parts, namely: the selection, the origin and the conditions.
The selection, expressed in a query with the keyword “select”,
tells the query engine which information we want to obtain
as a result. The origin, expressed with the keyword “from”,
defines the annotations the engine should browse to obtain the
results. Finally, the conditions, expressed with the keyword
“where”, describe the clauses to filter the data according to
the properties in the annotations. Conditions can be seen as
predicates that evaluate the annotations.

5http://www.eclipse.org/modeling/emf/downloads/?project=query2

select S from
[#Sentence#] as S,
[#Token#] as T

where for T(
stem = ’commun’ or lemma = ’interaction’ or
lemma = ’internet’ or lemma = ’external’ or
lemma = ’separate’ or lemma = ’online’ or
lemma = ’server’ or lemma = ’offline’
or stem = ’connect’

)
where T.begin > S.begin where T.end < S.end

Figure 3. NLP-based query

In addition, we have developed an abstraction layer
that allows analysts to seamlessly incorporate UIMA-
generated annotations in the queries. This allow us to
avoid inputting complex namespaces for the annotations
and figuring out the correct domains on the fly. For
instance, instead of having to enter “select S from
edu.isistan.uima.unified.typesystems.nlp.Sentence ...” we can
just type “select S from [#Sentence#]”. Figure 3 shows an
example of an NLP-enriched query for finding special con-
cepts related to distribution and connectivity concerns. The
query searches for sentences containing tokens whose stems
or lemmas match a particular keyword.

Alternatively, the rule-base engine is basically the inte-
gration of the existing NLP pipeline and its annotations
with the UIMA RUTA (Rule-based Text Annotation) project6.
RUTA is an imperative rule language extended with scripting
elements. The main idea behind a rule is to define a pattern
of annotations with additional conditions, and if the pattern is
matched, then be able to execute a set of actions.

A rule is composed of four parts, namely: a matching
condition, an optional quantifier, a list of inner conditions,
and a list of actions. The matching condition is typically
an NLP annotation by which the engine narrows the scope
to the covered text. The quantifier is essentially describes
if it is necessary to match the annotation and how often.
Inner conditions make possible to check additional properties
of the annotations that need to be fulfilled, such as their
properties. Actions define the consequences of the rule, which
commonly end up being the creation of new annotations or
the modification of existing annotations.

Figure 4 shows an example of a RUTA rule for finding
a modifiability architectural tactic in design documents. In
the rule, the first line declares a temporal annotation called
ReduceCoupling. Next, we load a number of words associated
to the reduce coupling tactic and store them in a list. Then,
we mark the text with the ReduceCoupling annotation for
those words present in the list. Then, we look for sentences
that contain those words and create a new DesignDecision
annotation. Finally, we remove the temporal annotations.

6https://uima.apache.org/ruta.html

DECLARE ReduceCoupling;
STRINGLIST relatedWords = { encapsulate, API, application
programming interface, intermediary, wrapper, restrict, depen-
dencies, refactor, abstract common services, bean, ejb };
Document{ -> MARKFAST(ReduceCoupling, relatedWords,
true) };
Sentence{ CONTAINS(ReduceCoupling) -> CREATE(De-
signDecision, “kind” = “Modifiability”, “typex” = “reduce
coupling tactic”) };
ReduceCoupling{ -> UNMARK(ReduceCoupling) };

Figure 4. NLP-based rule

III. ADDRESSING SOFTWARE ENGINEERING PROBLEMS
WITH AUTOMATED TOOLS

The text processing infrastructure and the searching lan-
guages presented before were employed as basis for the
development of automated tools for SE problems, such as
REAssistant [6], ReqAligner [7], and a tool that retrieves
design decisions [8] for improving the recovery of traceability
links between requirements and the architecture. The following
sub-sections give more details about each of the applications.

A. App#1: Revealing Crosscutting Concerns

The first application where we employed our NLP in-
frastructure was devoted to the analysis of use cases. Use
cases normally have textual specifications that describe the
interactions between the system and external actors. However,
since use cases are specified from a functional perspective,
concerns that do not fit well this decomposition criterion
are kept away from the analysts’ eye and might end up
intermingled in multiple use cases. These crosscutting con-
cerns (CCCs) are generally relevant for analysis, design and
implementation activities and should be dealt with from early
stages. Unfortunately, identifying such concerns by hand is a
cumbersome and error-prone task, mainly because it requires
a semantic interpretation of textual requirements.

To ease the analysis of CCCs, we developed an automated
tool called REAssistant that is able to extract high-level proper-
ties and localize quality-attribute information from textual use
cases to reveal candidate CCCs, helping analysts to reason
about them before making important commitments in the
development. Analysts can define concern-specific queries in
terms of the NLP annotations to search for CCCs. The queries
take advantage of use-case-specific annotations called “Do-
main Actions” to extract not only CCCs but also their crosscut-
ting relations (i.e., requirements affected by CCCs). Domain
actions are a taxonomy of domain-neutral classes applicable
to use cases that abstract common types of interactions, such
as input/output operations, information transmission, or data
handling in the system, among others. The REAssistant tool is
implemented as a set of Eclipse plugins that provide special
views for visualizing CCCs at different levels of granularity.

REAssistant comes loaded with a predefined ruleset of
CCCs, but can be easily customized by analysts. The queries

DIRECT QUERY #1
select S from [#Sentence#] as S, [#Token#] as T
where for T (lemma = ’response’ or lemma = ’second’ or
lemma = ’time’ or stem = ’delay’ or lemma = ’throughput’ or
lemma = ’latency’ or lemma = ’deadline’)
where T.begin >= S.begin where T.end <= S.end
INDIRECT QUERY #2
select S from [#Sentence#] as S, [#DomainAction#] as DA
where for DA (label = ’Calculation’)
where DA.begin >= S.begin where DA.end <= S.end
INDIRECT QUERY #3
select S from [#Sentence#] as S, [#DomainAction#] as DA,
[#Token#] as T
where for DA (label = ’Process’)
where for T (lemma = ’result’ or lemma = ’value’)
where T.begin >= S.begin where T.end <= S.end
where DA.begin >= S.begin where DA.end <= S.end

Figure 5. Queries for Searching a Performance Concern

codify knowledge about concerns and how they relate semanti-
cally to natural language expressions, and were defined by ex-
perienced analysts to cover a wide range of software domains.
There are two types of queries: i) direct queries, responsible
for detecting a CCC; and ii) indirect queries, for detecting
domain actions that are potentially related to that concern.
Direct queries are focused in localizing explicit references to a
particular CCC, for example, the word “server” or “database”.
Complementary, indirect queries are focused in finding more
subtle associations that come from a semantic interpretation
of the use cases. Figure 5 illustrates a PERFORMANCE rule
composed of three queries. Query #1 would find parts of
the text related to PERFORMANCE through the analysis of
token lemmas such as “response” and “second”, similarly to
keyword-based approaches. Queries #2 and #3 make use of
domain actions to reveal indirect impacts, looking for actions
such as “calculation” and “process”. For more information
about the architecture of the tool, the NLP pipeline and the
concern ruleset, the reader is referred to [6]. In this publication,
we also report on the results of an empirical evaluation of
REAssistant with three case-studies.

B. App#2: Identifying Duplicate Functionality

A second application of our NLP infrastructure to use
cases is presented in [7]. In this publication, we tackled the
problem that in spite of existing guidelines for writing use
cases, industrial use cases do not often meet the standards
of what it is considered a “good” use case model and often
exhibit signs of unwanted/unnecessary redundancy. Duplicat-
ing functionality is the action of repeating the description of
some interactions between the system and actors [11]. Several
factors contribute to this phenomenon, such as: too many
requirements, inexperienced analysts, changing requirements,
or copy/paste abuse, among others. Although duplication is
not always a quality defect, and it might be there for the
sake of readability of non-technical stakeholders, the lack of

modularity and abstraction can have a profound (negative)
effect on the developers conducting activities such as effort
estimation, project planning , architectural design, change
impact analyses and evolution management. Unfortunately,
finding duplicate functionality in multiple specifications is a
cumbersome, arduous and error-prone activity for the analysts.
For this reason, we developed a tool called ReqAligner that
helps analysts to identify duplicate behaviors in use cases and
provides guidelines to mend those defects (duplications) in
an automated fashion. Similarly to REAssistant, ReqAligner
leverages on a domain-specific classifier of semantic actions
and, based on such knowledge, employs a sequence alignment
technique for finding suspiciously similar functionalities in the
use cases. Moreover, the tool is also able to suggest UML
relationships that can help analysts to remove duplications and
ultimately improve the overall requirements model.

Internally, ReqAligner assembles sequences (or chains) of
domain actions after the semantic analyses of use-case steps is
completed. The resulting sequences synthesize a summarized
view of a use case scenario, which enables the comparison of
scenarios based on their overall semantics (that is, according
their intention and meaning). At this point, the different
sequences are processed and matched (pairwise) by means of
a customized sequence alignment (SA) technique [12]. The
sequence alignment basically compares the constituent ele-
ments of two different sequences (also referred to as symbols
or characters in the bioinformatics jargon) and aims at finding
a sub-chain that maximizes a given similarity function. When
two sequences go under analysis, the comparison depends on
two predefined parameters [12]: the substitution matrix and
the penalization table, which we adapted to the use cases
domain. On one hand, the substitution matrix defines the
similarities between the use-case steps (according to their
intention). On the other hand, the penalization table defines
adjustments (i.e., penalties) the aligner should apply to the
similarity score when there are gaps between the matched
sequences. If some textual portions of a pair of use cases
were successfully aligned, it means that we have one or
more candidate duplications in the functional specification.
Based on these results, the approach applies simple heuristics
to determine the kind of problem detected and the most
likely UML relationship that can help to refactor (and thus,
improve) the use cases. For more information about the tool,
the adaptation of the sequence alignment technique to use
cases, and the refactoring heuristics, the reader is referred to
[6]. In this publication, we also report on the results of an
empirical evaluation of ReqAligner with five publicly available
case-studies that produce promising results.

C. App#3: Retrieving Traceability Links

We are also working on a solution that takes advantage
of NLP pipeline and the scripting language for recovering
traceability links between architectural documentation and
requirements documentation. We are interested in this problem
because in some software domains the satisfaction of quality
attributes is critical, and the consequences of a failure may

cause financial losses or endanger human lives (e.g., automo-
tive systems, aircraft control systems, spaceships controllers
and medical machinery, among others) [13]. These systems
often have to go through rigorous controls to ensure that
the implementation fulfills the requirements. In that context,
having traceability records between the requirements and the
architecture is a must for assessing software quality [14].
Unfortunately, these kind of traces are hard to recover and
maintain. One impediment is the ambiguities and complex
semantics of natural language, which is commonly used to
specify requirements and describe the architecture. Another
setback is the size of the documents, which contain irrelevant
information that hinder the discovery of traces.

Essentially, our solution initially finds portions of the docu-
ments related to quality attributes (e.g., crosscutting concerns
and design decisions) and then uses a latent semantic analysis
(LSA) technique for identifying potential traces. To filter the
documents, we take advantage of the NLP results and RUTA
to codify rules able to spot design decisions in the text using a
well-known taxonomy of architecture patterns and tactics [15]
(see Figure 4). Then, using the output of REAssistant for use
case specifications, we transform the resulting sentences into
a vector space model. Afterwards, we use LSA to recognize
potential traces by comparing the sentences pairwise and
using the cosine distance to compute their similarity. We are
currently writing an article to report the design of the tool and
some experiments carried out in three case-studies.

IV. RELATED WORK

Using NLP in hardware documentation can bring several
benefits to the building process of SoC-based designs and
improve the quality of Application Specific Integrated Circuits
(ASIC). On one hand, text analytics modules are helpful to
translate hardware requirements described in natural language
into design models that can be used as a starting point by
engineers. On the other hand, several NLP techniques can help
hardware designers to derive constraints and assertions out
of comments and textual specifications in order to automate
the verification of the design via model checking. The work
of Granacki et al. was one of the first attempts to use NLP
to generate partial hardware designs by analyzing natural
language specifications [3]. Their idea consisted of identifying
a set of fixed concepts with pattern matching techniques,
and then map those concepts to pre-defined design structures.
Another interesting proposal given by Cyre et al. aims to
the derivation of VHDL (VHSIC Hardware Description Lan-
guage) snippets from informal hardware descriptions [4]. They
presented a proof-of-concept prototype that parses sentences
written in English and builds a conceptual graph for them
(including processes, conditions and signals). Then, the graph
is analyzed and a Process Model Graph and VHDL code is
generated. However, this idea was never implemented in an
actual assistance tool.

More recent publications have centered their attention in
streamlining the verification of hardware designs using NLP.

In [1], Soeken et al. proposed an advanced technique for ex-
tracting assertion-type information from a system specification
written in English by exploiting grammatical similarities of the
sentences. Their research is an attempt to reduce the effort of
defining hardware assertions by hand. This kind of assertions
are commonly used in Assertion Based Verification (ABV)
methods to verify complex software systems, for instance, us-
ing languages like SystemVerilog. At the outset, the technique
classifies the sentences into high and low abstraction level
assertions and filters the former because these do not have
enough detail. The remaining sentences are then grouped into
clusters based on their grammatical structure and the semantics
of the words. Particularly, the technique makes extensive use
of a typed dependency representation for comparison purposes
and the SPARQL querying language for extracting information
from the sentences. Each of the clusters is then converted
into formal properties (i.e., assertions) by using transformation
rules. The idea is that each cluster can be described by an
archetypical SystemVerilog Assertion (SVA) template, and
rules have to only fill up the template. This solution requires
to generate a small number of SVA to automatically generate a
full set of assertions. Harris et al. also explored the use of NLP
for automating verification tasks in the hardware design cycle
[5]. They developed a formal attribute grammar for translating
inline comments of HDL (Hardware Description Language)
code specifications to syntactically-correct verification prop-
erties in CTL (Computation Tree Logic). These properties
can be directly used to verify the design via model checking
techniques. An attribute grammar allows grammatical symbols
to be replaced by an attribute which is then evaluated in
terms of the attributes of other symbols. The customized
grammar used in this work contains over a hundred unique
rules to recognize things like: top-level attributes, implications,
wait until semantics, signal values, signal assignments, signal
names, among others productions. The sentences are gathered
from HDL code comments and parsed using a descent parser
and the attribute grammar. Then, the resulting parse tree is
evaluated for creating a set of CTL properties.

In summary, despite some interesting tools for automating
hardware design exist, we think that the underlying NLP
techniques used are rather basic and can be enhanced with
newer algorithms. An important drawback we noticed is that
most tools are developed in a ad-hoc fashion, making the
reuse and evolution of the underlying techniques harder. We
believe that these limitations can be overcome by using a text
infrastructure like ours for SE, and that existing text modules
can be adapted to hardware specifications with little work.

V. DISCUSSION AND OPEN CHALLENGES

Many essential tasks in modern hardware development,
such as hardware design and testing, can be largely enhanced
by using automated tools able to assist engineers. Some
initial research has been done by integrating smart natural
language analyzers, achieving promising results and leading
to effort/time savings. However, we believe that existing
approaches still have room for improvements by using more

advanced and semantic-aware NLP modules. Along this line,
using an extensible and configurable text processing infrastruc-
ture like ours may help to create better tools for processing
hardware specifications and deriving useful models. Some
direct advantages are the following. First, different types of
hardware documentation can be analyzed by reconfiguring the
NLP pipeline, allowing to process code comments or informal
requirements with the same modules. Second, the retrieval
mechanisms provided by RUTA are powerful enough to re-
place complex techniques like attribute grammars and parse
trees and accomplish the same goals. Third, enhancing the
results produced by an automated tool that applies searching
queries or rules is straightforward because the languages are
easy to understand and modify.

Additionally, we think particular tasks of the related work
might be enhanced with our NLP pipeline and the information
extraction mechanisms developed for software artifacts. Some
ideas worth investigating include: (i) incorporating special
modules for identifying time expressions and their relations7

for enriching the analysis of temporal constraints, (ii) us-
ing anaphora resolution modules for avoiding problems with
pronouns and referring entities (only understood by context)
commonly used in informal descriptions, (iii) using robust
parsing techniques such as finite state transducers able to tol-
erate syntactic and grammatical mistakes in the text, (iv) using
RUTA for filling SVA templates and producing assertions,
and (v) converting the attribute grammar to RUTA rules for
improving its evolution over time.

Overall, we are confident that the hardware community can
take advantage of the knowledge of NLP techniques learned
in other disciplines, such as Software Engineering. Especially,
we think that they should exploit the synergies with other
researchers so as to allow the tools to improve rapidly and
achieve better performance.

7http://nlp.stanford.edu/projects/time.shtml

REFERENCES

[1] M. Soeken, C. Harris, N. Abdessaied, I. Harris, and R. Drechsler, “Au-
tomating the translation of assertions using natural language processing
techniques,” in Specification and Design Languages (FDL), 2014 Forum
on, vol. 978-2-9530504-9-3, Oct 2014, pp. 1–8.

[2] I. Harris, “Extracting design information from natural language spec-
ifications,” in Design Automation Conference (DAC), 2012 49th
ACM/EDAC/IEEE, June 2012, pp. 1252–1253.

[3] J. J. Granacki, A. C. Parker, and Y. Arena, “Understanding system
specifications written in natural language,” in Proceedings of the 10th
International Joint Conference on Artificial Intelligence, ser. IJCAI’87,
vol. 2. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1987, pp. 688–691.

[4] W. R. Cyre, J. Armstrong, M. Manek-Honcharik, and A. J. Honcharik,
“Generating vhdl models from natural language descriptions,” in Pro-
ceedings of the European Design Automation Conference, ser. EURO-
DAC ’94. Los Alamitos, CA, USA: IEEE Computer Society Press,
1994, pp. 474–479.

[5] C. Harris and I. Harris, “Generating formal hardware verification prop-
erties from natural language documentation,” in Semantic Computing
(ICSC), 2015 IEEE International Conference on, Feb 2015, pp. 49–56.

[6] A. Rago, C. Marcos, and A. Diaz-Pace, “Assisting requirements an-
alysts to find latent concerns with REAssistant,” Automated Software
Engineering, June 2014.

[7] ——, “Identifying duplicate functionality in textual use cases by aligning
semantic actions,” Software and Systems Modeling, August 2014.

[8] ——, “Uncovering quality-attribute concerns in use case specifications
via early aspect mining,” Requirements Engineering, vol. 18, no. 1, pp.
67–84, March 2012.

[9] D. Ferrucci and A. Lally, “UIMA: an architectural approach to unstruc-
tured information processing in the corporate research environment,”
Natural Language Engineering, vol. 10, no. 3-4, pp. 327–348, 2004.

[10] M. Palmer, D. Gildea, and N. Xue, Semantic Role Labeling, ser.
Synthesis Lectures on Human Language Technologies. Morgan &
Claypool, 2010.

[11] A. Ciemniewska and J. Jurkiewicz, “Automatic detection of defects in
use cases,” Master’s thesis, Poznan University of Technology - Faculty
of Computer Science and Management - Institute of Computer Science,
2007.

[12] A. Polanski and M. Kimmel, Bioinformatics. Springer, 2007. [Online].
Available: http://books.google.com.ar/books?id=oZbR3GEdmVMC

[13] J. Cleland-Huang, O. Gotel, J. Huffman Hayes, P. Mäder, and A. Zisman,
“Software traceability: Trends and future directions,” in 36th ACM/IEEE
International Conference on Software Engineering (ICSE’14), ser. Work-
shop on the Future of Software Engineering, Hyderabad, India, June
2014, pp. 55–69.

[14] M. Mirakhorli and J. Cleland-Huang, “Detecting, tracing, and mon-
itoring architectural tactics in code,” IEEE Transactions on Software
Engineering, 2015.

[15] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice,
3rd ed., ser. SEI Series in Software Engineering. Addison-Wesley
Professional, October 2012.

http://books.google.com.ar/books?id=oZbR3GEdmVMC

	Introduction
	Reusable Assets for Analyzing Textual Specifications
	Analyzing Text with the UIMA Pipeline
	Extracting Information with EMF/Query2 and RUTA

	Addressing Software Engineering Problems with Automated Tools
	App#1: Revealing Crosscutting Concerns
	App#2: Identifying Duplicate Functionality
	App#3: Retrieving Traceability Links

	Related Work
	Discussion and Open Challenges
	References

