
Early Aspect Identification from Use Cases using NLP
and WSD Techniques

Alejandro Rago
Fac. Cs. Exactas, UNICEN

University - Argentine
Campus Universitario
Paraje Arroyo Seco
+54 2293 439681/2

arago@alumnos.exa.un
icen.edu.ar

Esteban S. Abait, Claudia Marcos
ISISTAN Research Institute,

Fac. Cs. Exactas,
UNICEN University, Argentine

Campus Universitario
Paraje Arroyo Seco

+54 2293 439681/2 - ext. 26

{eabait, cmarcos}@exa.unicen.edu.ar

Andrés Diaz-Pace
Software Engineering

Institute,
Carnegie Mellon University
4500 Fifth Ave., Pittsburgh

PA, 15232 – USA
+1 412 268 9565

adiaz@sei.cmu.edu

ABSTRACT
In this article, we present a semi-automated approach for
identifying candidate early aspects in requirements specifications.
This approach aims at improving the precision of the aspect
identification process in use cases, and also solving some
problems of existing aspect mining techniques caused by the
vagueness and ambiguity of text in natural language. To do so, we
apply a combination of text analysis techniques such as: natural
language processing (NLP) and word sense disambiguation
(WSD). As a result, our approach is able to generate a graph of
candidate concerns that crosscut the use cases, as well as a
ranking of these concerns according to their importance. The
developer then selects which concerns are relevant for his/her
domain. Although there are still some challenges, we argue that
this approach can be easily integrated into a UML development
methodology, leading to improved requirements elicitation.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications –
Methodologies (e.g., object-oriented, structured)

General Terms
Design, Documentation, Languages.

Keywords
Early aspect identification, semantic aspect analysis

1. INTRODUCTION
Accomplishing a good separation of concerns [1] since early
development stages, such as requirements elicitation and
architectural design, is crucial [2] because many concerns have

far-reaching effects on design and implementation decisions. A
poor concern identification usually precludes developers from
reasoning about their effects on the system (or on other concerns),
and consequently affects the final quality of the software product.
For example, a security concern that is inadvertently skipped in a
use case can lead to wrong implementation, in which adding
security mechanisms late in the development can be really hard.
Over the last years, it has been argued [2] that the identification of
the so-called early aspects can significantly help developers to
analyze and plan for design tradeoffs early in the lifecycle. In this
article, we describe a semi-automated approach to mine candidate
early aspects from requirements specifications more effectively.

Other researchers have previously approached the management of
early aspects in systematic ways. For example: Theme/Doc [6,7]
exposes the relationships between the components of a system;
EA-Miner [14,15] permits a quick identification of system-related
aspects from unstructured requirements; Rosenhainer et al. [16]
use Information Retrieval techniques to detect possible concerns
in requirements; among others. Related to concern identification,
Shepherd et al. [17,18] propose a structure called Action-Oriented
Identifier Graph (AOIG) that gives supports for refactoring
object-oriented code into aspects. All these approaches have
shown interesting results with respect to parts of the process of
identifying early aspects. However, these approaches still present
drawbacks and challenges. A first drawback is the low precision
when mining candidate aspects, due to the intrinsic difficulty of
analyzing text in natural language. A second drawback is a weak
syntactic analysis of the text, and the lack of semantic analysis.
Some challenges include: integration with software development
methodologies and scalability of the analysis techniques.

In this context, we argue that the combination of techniques such
as Natural Language Processing (NPL) [12] and Word Sense
Disambiguation (WSD) [13] has a great potential for boosting the
precision of algorithms for discovering early aspects. We describe
here an aspect mining approach that takes a use case specification
as input, and then is able to perform syntactic and semantic
analyses of this input in order to identify potential concerns of the
system. The concerns are captured by an extended AOIG, and
they can refer either to functional or quality-attribute (extra-
functional) system properties. We have also developed tool
support for the approach, so as to minimize the developer’s work
when looking for early aspects in the AOIG. As the tool proposes

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
EA’09, March 3, 2009, Charlottesville, VA, USA.
Copyright 2009 ACM 978-1-60558-456-0/09/03...$5.00.

candidate aspects, the developer can filter out those aspects that
are relevant to her/his system. The output of the approach is an
extended use case specification that includes those aspects
selected by the developer and their relationships to the use cases.
The main contribution of this work is the incorporation of word
sense awareness in an aspect identification process, as well as a
workflow of activities developed to alleviate the problems caused
by ambiguities and synonyms in requirements in natural text.
The rest of this paper is organized into 4 sections. Section 2
describes the main characteristics of an aspect mining approach,
which drove the development of our approach. Section 3 presents
the activities of the aspect identification process, based on text
analysis techniques. Section 4 shows preliminary results obtained
with the tool that supports the approach. Finally, Section 5
concludes the paper and discusses future work.

2. CHARACTERISTICS FOR AN ASPECT
MINING APPROACH

From a study of approaches from the literature, and based on our
own experience, we believe that a tractable approach for
identifying early aspects from software artifacts should be:

1. Aware of documentation structure. The use of templates [10]
for software documentation (e.g., UML use case template) is
a standard practice in many development methodologies.
Thus, the way in which textual information is captured and
organized provides clues about candidate aspects.

2. Transparent to the developer. Several aspect mining
approaches, even when providing tool support, assume that
the developer is willing to provide as much information as
need for the analysis of early aspects. This limits the
practicality of the approaches. Instead, the analysis should
take whatever software documents are available, and require
as little information from the developer as needed.

3. Driven by semantic analysis. Although the ambiguity
problems coming from the use of natural language are
unavoidable, these problems can be alleviated in particular
domains by combining lexical, syntactic and semantic
analyses of structured information. Of course, the analysis
techniques to be applied here will be more complex.

Let’s consider a motivating example. We have a system that can
generate workflows of tasks that can be executed by users. An
analyst has elicited three use cases for this system from the
stakeholders, as depicted in Figure 1. In addition, the analyst has
documented some supplementary requirements that apply to the
use cases. Before proceeding with the system design, the
developers are interested in early aspects they should be aware of.
However, eliciting such information directly from the
stakeholders is a tedious and error-prone activity. A more efficient
solution is to have a tool assisting the analyst to process the
available use cases and extract a list of candidate early aspects.
This way, (s)he can quickly confront those early aspects with the
stakeholders and pass the relevant aspects to the developers.

Interestingly, several text analysis techniques to deal with the
situation illustrated by the example have been developed for other
domains (e.g., web search). Despite the availability of these
techniques, their application to analyzing latent information in
software artifacts is still a topic of research. In particular, we have

investigated a number of text analysis techniques that can be
added to an aspect mining tool, so as to take into account the three
characteristics stated above. The proposed techniques include:

• Use an NLP tool to perform a lexical and syntactic
analysis of the text of the use cases. This tool will tag
certain words of each sentence, indicating if they are
verbs, nouns, etc.

• Perform a WSD analysis of each tagged word, which
will determine the meaning of the word according to its
context.

• Perform an analysis of word groups based on semantic
dictionaries [4], in order to generate clusters of words
having similar semantic meaning. This processing also
includes the use of thesaurus and stemming algorithms.

Figure 1 – Sample use cases

3. PROPOSED APPROACH
A common technique for identifying aspects in textual
specifications is to search for verbs (actions) that indicate
crosscutting behavior [7, 15, 16]. For instance, action verbs such
as ‘verify’, ‘check’, ‘log’, or ‘update’ often give clues about
crosscutting behaviors. A better technique is that of looking (if
possible) at the objects to which these verbs affect [17]. These
objects are called direct objects (DOs). The key idea here is that
an action applied to different objects can lead to different
behaviors (even when using the same verb). We can then use
combinations of verbs and objects to find specific crosscutting
concerns, which would be otherwise overlooked when analyzing
single verbs. For instance, the sentences “The system checks that
username and password are valid" (precondition of UC1 in Figure
1) and "The system checks the new task is valid" (basic flow of
UC3 in Figure 1) use the same verb but refer to different
behaviors. The first verb-object pair is about validation of user
access to the system, while the second is about consistency of task
data entered into the system.
Along this line, we propose a semantic analysis of verb-object
pairs in specifications expressed in natural language, based on the
AOIG proposed in [18]. There are cases in which the text in
natural language does not include information about direct
objects, so individual verbs must be also considered in the AOIG.
In addition, verbs can be grouped in clusters according to their
semantic meaning. We have extended the AOIG technique to

support these two considerations. Figure 2 shows a possible
AOIG built from our use cases. In our AOIG, there are four types
of nodes: (i) nodes that correspond to verbs, (ii) nodes that
correspond to objects, (iii) nodes that correspond to verb clusters,
and (iv) nodes that correspond to object clusters. The arcs in the
graph are used to navigate the nodes, that is, from a verb to a
direct object (and vice versa), from a verb to a verb cluster, or
from an object to an object cluster. The dashed lines stand for
verbs without a corresponding direct object. As we will explain
later, the nodes of the AOIG are linked to text of the use cases.

Figure 2 – Capturing concerns with an extended AIOG
UML is used as the modeling support for our approach. In
particular, the use-case notation [8] of UML provides a structure
for textual specifications, and we can benefit from that structure
when looking for potential crosscutting concerns. However, this
approach can be applied to any requirements specification
document. A standard use-case template [10] is structured around
five sections, namely: basic flow, alternative flow, precondition,
postcondition, and special requirements. The last section collects
all the requirements (such as quality-attribute issues) on the use
case that are not considered in the above sections, but that should
be taken care of during design or implementation. Use cases are
often accompanied by a supplementary specification for system
requirements that are not noted in the use-case template [10].
Assuming a use case in which all its sections are filled in with
text, we extract verb-object pairs from the text and categorize the
pairs either as functional or quality-attribute concerns. A
(potential) functional concern is detected by looking at the
sections ‘basic flow’, ‘alternative flow’, ‘precondition’ and
‘postcondition’. A (potential) quality-attribute concern is the
result of a verb-object pair detected in the ‘special requirements’
section of the template. Also, a quality-attribute concern may
come from verb-object pairs in the supplementary requirements.
For instance, in Figure 2, there is an ‘accessing’ concern tagged as
a quality-attribute aspect, because one of its verbs (‘verifies’) is
present in the supplementary requirements (verifies-users).
The processing of use cases to build an extended AOIG comprises
two phases: (i) tagging of use-case text using NLP, and (ii)
semantic analysis of tagged words using WSD. In the first phase,

NLP begins tagging the basic and alternative flows, preconditions
and postconditions of each use case. After that, the ‘special
requirements’ section as well as any supplementary information
are tagged. In the second phase, semantic dictionaries [4] are used
to perform the semantic disambiguation of words. These
dictionaries give support to the creation of clusters in our AOIG.
Each cluster node is a consequence of navigating the semantic
relationships between terms of a dictionary. By clustering related
verbs and objects after the semantic disambiguation of words, we
can tackle some problems caused by synonyms, ambiguity or
vagueness in natural language. For example, in Figure 2, two verb
nodes referring to verifications (‘checks’ and ‘verifies’) are
clustered in node ‘verb group 1’;four verbs associated with
persistency (‘adds’, ‘stores’, ‘updates’, and ‘modifies’) go to
‘verb group 2’, and so on. The clustering is similar for direct
objects.
Once the AOIG is built, the graph needs to be traversed in order
to select nodes that point to two or more use cases. We refer to
this type of nodes as “hint node”. The hint nodes are the ones that
actually lead to candidate early aspects. In Figure 2, note that hint
nodes act like “behavior” separators: the node (VG1,DOG2)
refers to a particular behavior, while the node (VG1,DOG3) refers
to a different one. Remember also that nodes are already
classified either as functional or quality-attribute concerns. The
traversal of the AOIG returns a list with a ranking of hint nodes
that showed crosscutting behavior. Then, the list is presented to
the analyst, who can select and refine the concerns into aspects
that (s)he judges relevant for the domain. Filters can be applied
here to further prune the list, based on analyst’s criteria. For
instance, (s)he can apply a filter based on a specific direct object,
e.g. “user”, and get only those aspects related to user issues. A
similar filtering can be done for specific verbs, or other words.

4. PROCESS AND TECHNIQUES USED
As outlined above, our approach processes a set of use cases, then
constructs an AOIG, and finally generates candidate early aspects
out of the graph. In more detail, the aspect identification process
involves three main blocks, as depicted in Figure 3.

Figure 3 – Steps of the Aspect Identification Process

The NLP Analysis block performs lexical, syntactic and semantic
analyses of the textual sentences used in each use case. In
addition, this block collects statistics and data about the
placement of words in the sentences. The tasks involved in NLP

Analysis include: information extraction, detection of sentences,
detection of words inside the sentences, word tagging using part-
of-speech (POS) techniques, semantic disambiguation of words,
and word grouping according to syntactic criteria. An NLP tool
implements all these tasks, except for the semantic
disambiguation task that is implemented by an algorithm known
as “Maximum Relatedness Disambiguation” (MRD) [13]. In this
work, we used some Java-based NLP toolkits provided by
OpenNLP [3], which implement infrastructure for common NLP
components.
The purpose of disambiguation is to determine the intended sense
of a particular word (with many potential meanings) when used in
particular context. The MRD algorithm basically chooses the
word sense that maximizes the semantic relationships of that word
with other words within a limited context window. To do so, there
are different metrics to quantify semantic relationships among
words. In our work, we modified the original algorithm so as to
consider all the words in the text, and we also set the context
window of a word to the whole sentence that contains that word.
The word definitions are taken from the WordNet semantic
dictionary [4]. This is a database that contains information about
nouns, verbs, adjectives and adverbs. WordNet is structured in
terms of sets of synonyms (called synsets). Each synset can be
seen as the representation of a concept or sense. WordNet also
connects the concepts by means of different relationships
(hypernyms, hiponyms, troponyms, etc.). Therefore, the user of
WordNet (like our approach) has a network of concepts available,
in which related concepts are identified by computing a
“distance” metric between them. Two common metrics in the
algorithm are Lesk Gloss Overalp Measure (LGOM) and Lesk
Extended Glos Overlap Measure (LEGOM) [11]. LGOM is easy
to compute but not very effective, while LEGOM is more
effective than LGOM but its computation takes more time. For
instance, let’s assume that we want to find the correct sense for
the word ‘project’ in the sentence “The user adds tasks to the
project”. According to WordNet, the glosses for senses of
‘project’ can be: ’project1’ project2’, and the context word has two
senses: ’task1’ and ’task2’, as depicted in Figure 4. The algorithm
counts words co-occurring in all combination of senses, and picks
those senses that maximize the count. Here, ‘project1’ and ‘task2’
are the senses chosen.

Figure 4 – Using the Lesk distance metric with WordNet
Regarding the Graph Generation block, it consists of four tasks:
rules for pattern matching, similarity analysis for verbs/objects,
dynamic clustering of verbs/objects, and construction of the
AOIG itself. By means of pattern matching, pairs of verbs and
direct objects or single verbs are detected in each sentence

(remember that all the words were tagged during NLP analysis).
After that, we rely on the results of the disambiguation algorithm
and WordNet for identifying similar verbs and objects. Given two
concepts (either a pair of verbs or a pair of objects), they are
compared according to the number of terms shared by the
concepts. For verbs, the hierarchies of troponyms and hypernyms
of WordNet are used to span the words represented by the verbs.
For objects (nouns), the hierarchies of hypernyms and hyponyms
of WordNet are used to span the words represented by the nouns.
This spanning process is graphically exemplified in Figure 5. As
the text of the use cases is being analyzed, their verbs and objects
are added to different groups (clusters). At last, all the verbs,
objects and clusters are mapped to corresponding AOIG nodes,
and integrated into a graph like the one shown in Figure 2.

Figure 5 - Expanding the context of a word

The Aspect Finder block takes the outputs for the two previous
blocks and performs two tasks on the AOIG: graph traversal and
ranking of candidate early aspects. When traversing the graph, the
hint nodes that affect more than N use cases (the threshold N is
configured in the tool) are marked for further analysis. The fact
that a hint node affects several use cases is an evidence of a
crosscutting concern. The most representative verb of a hint node
is consequently suggested as candidate concern. For instance, hint
nodes (VG1,DOG3), (VG3,DOG2) and (VG2,DOG2) are
proposed as candidate concerns. Based on the source of the target
verb (i.e., the sections of the use case template), node
(VG1,DOG3) is categorized as a quality-attribute concern,
whereas nodes (VG3,DOG2) and (VG2,DOG2) are categorized as
functional concerns. A heuristic ranks the concerns detected in the
AOIG on the basis of parameters such as: number of crosscut use
cases per concern, total crosscutting count per verb cluster, verb
cluster occurrence per concern, object cluster occurrence per
concern, and functional/quality-attribute property of the concern.

5. PRELIMINARY EVALUATION
As a proof-of-concept, we have evaluated the techniques of our
approach in two case-studies. The first case-study was a student
management system (SMS) whose requirements specification
consisted of 3 use-cases and 3 specification pages. The second
case was a conference evaluation system (CES), involving 9 use-
cases and 15 specification pages. In order to identify early
aspects, we performed three experiments with different tools. In
the first experiment, we applied the Aspect Extractor Tool (AET)
[9], while in the remaining experiments with applied the
techniques described in this work. AET applies stop words and

stemming algorithms, and it basically suggests candidate aspects
when a verb is shared by two or more use cases. Our technique
was exercised with two configurations of the clustering algorithm,
setting parameters for minimum (T1) and maximal (T2)
effectiveness. Table 1 summarizes the numbers collected from the
experiments. The row ‘True Positives’ refers to those identified
aspects that were considered as relevant ones by the user. The row
‘False Positives’ refers to identified aspects that were discarded
by the user. The row ‘False Negatives’ are those aspects that
should have been identified but were missed by the technique. We
took typical measures such as Precision, Recall and F-measure
[5]. We also measured the time consumed (speed) by the aspect
identification process for each experiment.
The results were encouraging, as it can be seen from Table 1, with
the exception of speed. We observed an increase in recall, when
moving from the first to the third experiments. This was due to
two factors: the identification of concrete functional aspects, and
the correct discovery of relationships between aspects and use
cases. The functional aspects primarily came from specific
functionality scattered across the use cases, generally caused by
bad modularization of functionality. We also noted that both the
disambiguation and clustering techniques had a better
performance with larger and complete use-case specifications,
presumably because of the information amount in these
specifications. We observed that the use of NLP and WSD
requires almost no extra information manually entered by the
analyst. Thus, the aspect identification can be automated to a
larger degree than in existing approaches.

 SMS CES

 AET T1 T2 AET T1 T2

True Positives 5 6 5 6 13 18

False Positives 5 3 3 9 18 22

False Negative 3 2 3 14 7 2

Recall 0,62 0,75 0,62 0,3 0,65 0,9

Precision 0,5 0,67 0,62 0,4 0,42 0,45

F-Measure 0,56 0,71 0,62 0,34 0,51 0,6

Time (speed) 2s. 30s. 1min. 5s. 60min. 90min.

Table 1 – Results of several aspect identification experiments
Nonetheless, the main drawback of the proposed technique is still
its processing time. The time consumed by the analysis of
concerns took more than expected. In general, this performance
can be admissible or not, depending on the precision/ recall levels
needed by the analyst and on the sizes of the use-case
specifications. From the differences between the second and third
experiments, we see that the more we adjust the parameters for
the dynamic clustering, the better results we get regarding recall
and small false negatives. However, this improvement comes at
the cost of performance. Along this line, we have started to
investigate possible optimizations and filters for the aspect
identification process described in Section 4.

6. CONCLUSION
In this paper, we have discussed an approach for the identification
of candidate early aspects from requirements specifications in the
form of use cases. A novel characteristic of this approach is the
semantic analysis of textual requirements via NLP and WSD
techniques. Our semi-automated analysis is centered on the

relationships among terms in use cases (e.g., verbs, direct objects)
that often hint crosscutting behaviors. We believe that these
techniques can solve issues related to synonyms, vagueness and
ambiguity in text, as reported by other aspect mining approaches.
Future areas of improvement for this approach include: how to
enhance word clustering, how to add domain-specific filters for
reducing the aspect list, and how to implement strategies for
increasing the performance of our prototype, among others. In
addition, we are planning to evaluate this technique against other
techniques, based on a number of case-studies.

7. REFERENCES
[1] AOSD Net. 2008. DOI= http://aosd.net/
[2] Early Aspects. 2008. DOI= http://www.early-aspects.net/
[3] OpenNLP. 2008 DOI= http://sourceforge.net/projects/opennlp
[4] WordNet. 2008 DOI= http://wordnet.princeton.edu/
[5] Baeza-Yates, R. and B. Ribeiro-Neto. 1999 Modern
Information Retrieval. Addison-Wesley (Wokingham, UK, 1999)
[6] Baniassad, E., Clarke, S. 2004 Finding Aspects in
Requirements with Theme/Doc. In Workshop on EA, in
conjunction with AOSD Conference. (Lancaster, UK, 2004).
[7] Baniassad, E., Clarke, S. 2004 Theme: An Approach for
Aspect-Oriented Analysis and Design. In Proc. of ICSE’04.
[8] Cockburn, A. 2000. Writing effective use cases. Addison-
Wesley (October 15, 2000).
[9] Haak, B., Diaz, A., Pryor, J., Marcos, C. 2005 Identificación
Temprana de Aspectos. Revista SCCC, 2005. Vol. 6 (Workshop
in SE). In Spanish.
[10] Kruchten, P. 2004 The Rational Unified Process: An
Introduction, 3rd Edition. Boston, MA: Addison-Wesley.
[11] Lesk, M. 1986 Automatic Sense Disambiguation Using
Machine Readable Dictionaries. In Proc. of the 5th Annual Int.
Conference on Systems Documentation (Toronto, Ontario 1986).
[12] Li, K., et al. 2005 Object-Oriented Analysis Using Natural
Language. In Proc. of the ICYCS '05. (Beijing, China 2005).
[13] Pedersen, T., Banerjee, S., Patwardhan, S. 2005 Maximizing
Semantic Relatedness to Perform Word Sense Disambiguation.
University of Minnesota Super-computing Institute.
[14] Rashid, A., Moreira, A., Araújo, J. 2003 Modularization and
Composition of Aspectual Requirements. In Proceedings of the
AOSD’03. (Boston, Massachusetts 2003).
[15] Sampaio, A., et al. 2005 EA-Miner: a Tool for Automating
Aspect-Oriented Requirements Identification. in Proc. of the 20th
IEEE/ACM ICASE ‘05. (California, USA 2005).
[16] Rosenhainer, L. 2004 Identifying Crosscutting Concerns in
Requirements Specifications. In Workshop on EA, in conjunction
with OOPSLA 2004. (Vancouver, Canada 2004).
[17] Shepherd, D., Pollock, L., Tourwé. T. 2005 Using Language
Clues to Discover Crosscutting Concerns. In Proc. of the Int.
Workshop on MACS (ICSE’05). (St. Louis, Missouri 2005).
[18] Shepherd, D., Pollock, L., Vijay-Shanker, K. 2006 Towards
Supporting On-Demand Virtual Remodularization Using
Program Graphs. In Proc. of AOSD’06. (Bonn, Germany 2006).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

